skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Thursday, February 12 until 1:00 AM ET on Friday, February 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Moran, Chris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background Prescribed fire is vital for fuel reduction and ecological restoration, but the effectiveness and fine-scale interactions are poorly understood. Aims We developed methods for processing uncrewed aircraft systems (UAS) imagery into spatially explicit pyrometrics, including measurements of fuel consumption, rate of spread, and residence time to quantitatively measure three prescribed fires. Methods We collected infrared (IR) imagery continuously (0.2 Hz) over prescribed burns and one experimental calibration burn, capturing fire progression and combustion for multiple hours. Key results Pyrometrics were successfully extracted from UAS-IR imagery with sufficient spatiotemporal resolution to effectively measure and differentiate between fires. UAS-IR fuel consumption correlated with weight-based measurements of 10 1-m2 experimental burn plots, validating our approach to estimating consumption with a cost-effective UAS-IR sensor (R2 = 0.99; RMSE = 0.38 kg m−2). Conclusions Our findings demonstrate UAS-IR pyrometrics are an accurate approach to monitoring fire behaviour and effects, such as measurements of consumption. Prescribed fire is a fine-scale process; a ground sampling distance of <2.3 m2 is recommended. Additional research is needed to validate other derived measurements. Implications Refined fire monitoring coupled with refined objectives will be pivotal in informing fire management of best practices, justifying the use of prescribed fire and providing quantitative feedback in an uncertain environment. 
    more » « less